

Fourth Semester MCA Degree Examination, June/July 2013

Design and Analysis of Algorithms

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. What are asymptotic notations? Brief them by using some suitable examples.
 b. Explain a general plan for analysis non-recursive algorithm. (10 Marks)
 - b. Explain a general plan for analysis non-recursive algorithm. (04 Marks)
 c. Write an algorithm for Brute force string matching algorithm. (06 Marks)
- 2 a. Justify, if $t_1(n) \in 0$ $(g_1(n))$ and $t_2(n) \in 0$ $(g_2(n))$ then $t_1(n) + t_2(n) \in 0$ $(\max\{g_1(n), g_2(n)\})$.
 - b. Illustrate general method for solving a problem by using divide and conquer design technique. (04 Marks)
 - c. Write an algorithm for merge sort. Obtain its analysis by using Masters theorem. (08 Marks)
- 3 a. Write a greedy algorithm for identifying minimum spanning tree by using Prim's algorithm for a given graph G(V, E). (08 Marks)
 - b. Obtain the minimum spanning tree for the following graph G(V, E) by using Kruskal's algorithm. (08 Marks)

Fig.Q3(b)

- c. Illustrate a general method for solving a problem by using dynamic programming. (04 Marks)
- 4 a. Write an algorithm for obtain all pairs shortest path using Floyd's algorithm. Explain it with a suitable example. (10 Marks)
 - b. Write an algorithm for solving 0/1 Knapsack problem, explain it by following inputs:

Item #	1	2	3	4
Weight	2	3	1	2
Profit	20	30	10	20

Total capacity of Knapsack, W = 5.

(10 Marks)

- 5 a. Explain decrease and conquer design technique by using an algorithm for insertion sort.

 (10 Marks)
- b. Write Horspool's algorithm for string matching. Explain it with following inputs:

Text: THIS IS A DEMO FOR STRING MATCHING
Patten: DEMO (10 Marks)

- 6 a. List and explain the 3 constraints for estimating lower bounds. (06 Marks)
- b. Explain P, NP and NP complete problems with an example. (08 Marks)
- c. How decision trees are helpful to study performance of algorithm? (06 Marks)
- 7 a. What is Backtracking? Explain it by using n-queens problem. (08 Marks)
 - b. Write to solve assignment problem by using Branch and Bound technique.
 c. Define NP-Hard problem.
 (08 Marks)
 (04 Marks)
- 8 a. List and explain the 2 approximation algorithms for traveling salesman problem. (10 Marks)
- b. Explain parallel algorithm for prefix computation and list ranking. (10 Marks)